
LA-UR-21-31989
Approved for public release; distribution is unlimited.

Title: Computational Astrophysics in the Era of Technological Heterogeneity

Author(s): Dolence, Joshua C.

Intended for: Colloquium presentation

Issued: 2021-12-08

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

112/6/21 112/6/21Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Computational Astrophysics
in the Era of Technological
Heterogeneity
Josh Dolence
Los Alamos National Laboratory

November 30, 2021

212/6/21 212/6/21

Outline

• A profound shift in computing

• Challenges on the road ahead

• Parthenon, an exemplar of a productive path for computational astrophysics

• Phoebus, an exciting new code for relativistic astrophysics

312/6/21

The end of an era

Hennessy & Patterson, 2018

Si
ng

le
-c

or
e

pe
rfo

rm
an

ce

412/6/21

CPUs don’t have much runway Moore’s law isn’t
quite dead

But single-thread
performance isn’t
reaping the benefits

The end of Dennard
scaling is the end of
the “easy” road

The rise of multicore,
new inefficiencies,
dark silicon, fixed
TDP

512/6/21

HPC systems keep getting faster…

top500.org

612/6/21

…but that comes at a cost

Systems are getting really big!
2x every 1.8 years. 10x every 6 years.

Accelerators are increasingly common.
40% of aggregate performance in NVIDIA

GPUs.

712/6/21

Why accelerators?
• Like everything else in computing, it’s all about power
• Top systems now run at 10-30 MW!
• Accelerators can deliver more flops/watt

Great at
editing
Microsoft
Word
documents

Great at
doing
math with
dense
matrices

nvidia.com

Roughly the same number of transistors

Specialization can dramatically improve efficiency

812/6/21

Evolution of bitcoin mining

CPUs

GPUs

FPGAs

ASICs
Increasing specialization

iea.org

912/6/21

Specialized technologies are the future

Habana / Intel Gaudi AI Chip Qualcomm Cloud AI 100

Cerebras Systems
AI Wafer

Google’s Tensor
Processing Unit

Microsoft project
catapult

Amazon Graviton 2

Intel Stratix 10 NX FPGA with
integrated HBM2

European Processor
Initiative

ARM on FugakuNVIDIA adding more specialization

1012/6/21

Japan charts a course for future systems

“For future systems beyond exascale, a more disruptive architecture,
such as accelerators and specialized hardware, would be required.”

Vertical integration:
hardware architects,
software stack, and
application scientists
in co-design

Co-Design =

1112/6/21

Modern systems are complex and deeply hierarchical
Summit

256 Compute
Racks

18 Nodes per
Rack

2 IBM Power 9
CPUs

22 Cores
per CPU

4 hardware
threads per core

128 bit SIMD

6 NVIDIA V100
GPUs

80 Streaming
Multiprocessors

per GPU

64 CUDA cores
per SM

8 Tensor cores
per SM

1212/6/21

Writing code for modern HPC systems: the old way

Pick a language

• Fortran
• C
• C++
• Python

Pick an approach
for node-level

parallelism

• OpenMP
• pthreads/qthreads
• OpenACC
• SYCL/DPC++
• OpenCL
• CUDA
• HIP

Identify key
libraries and

software tools

• hypre/trilinos/petsc
• GNU GSL
• cuBLAS/cuSPARSE/etc
• ODEPACK
• Compilers

Pick an approach
for distributed

parallelism

• MPI
• SHMEM
• Charm++
• Legion
• PaRSEC

Choices here
constrain
below

Choices here
constrain
architectures

Not always
supported
on targets

Can require
careful design
from the start

Astrophysics codes with CUDA for GPUs
(incomplete list)

• RamsesGPU
• Cholla
• H-AMR
• AMReX-based codes
• GAMER
• Enzo

Compiler preprocessor used to select
largely distinct code paths for different
architectures

1312/6/21

Writing code for modern HPC systems: a better way

• Technological diversity has motivated the
development of abstractions for
performance portability

• Wraps CUDA, OpenMP, SYCL, etc.
• Goal is compelling performance across

architectures with single source
implementations

Kokkos (Sandia) provides
abstractions for data and
parallel execution that
enable codes to run
transparently across
architectures

Kokkos kernels provide
portable math libraries

Raja/CHAI provides similar
capabilities. (Livermore)

Case-study: K-Athena achieves comparable
CPU performance to Athena++ and better

GPU performance than similar native CUDA
codes. See Grete+20.

1412/6/21

Writing code for modern HPC systems: a better way

• Widely-adopted and well-supported abstractions for performance portability
“solve” a major challenge with the heterogeneous HPC landscape

• But serious challenges remain
− Optimal algorithms can differ across architectures
− Abstractions can’t change fundamental limitations of architectures – still have to have

knowledge of architectures to write performant code
− Extreme parallelism and Amdahl’s law – a Summit node has ~3x104 CUDA cores
− Extreme distributed scale

§ Asynchrony is a must
§ Load balancing is essential
§ I/O is a pain
§ Compute-in-network?

1512/6/21

Writing code for modern HPC systems: a better way

• Widely-adopted and well-supported abstractions for performance portability
“solve” a major challenge with the heterogeneous HPC landscape

• But serious challenges remain
− Optimal algorithms can differ across architectures
− Abstractions can’t change fundamental limitations of architectures – still have to have

knowledge of architectures to write performant code
− Extreme parallelism and Amdahl’s law – a Summit node has ~3x104 CUDA cores
− Extreme distributed scale

§ Asynchrony is a must
§ Load balancing is essential
§ I/O is a pain
§ Compute-in-network?

Solutions to these problems can be shared
across applications of a similar flavor.
Domain specific abstractions.

1612/6/21

Parthenon: a performance portable, physics agnostic
framework for block-structured AMR applications
• What is it? A “framework” designed to enable straightforward development of fast, portable, scalable

physics codes built on block-structured AMR
• Layering on domain specific data types and loop abstractions can make it straightforward to write

consistently performant code
• What does it provide?

− Mesh management w/AMR
− Load balancing
− Communication
− I/O
− Data structures to store and organize

mesh-based data and particle data
− Memory management
− Task-based parallelism
− Abstractions to flexibly represent parallel loops
− Adjustable parameters to adapt to different architectures github.com/lanl/parthenon

1712/6/21

Parthenon basics

• Downstream applications define a driver that expresses the basic control flow
• Represented as a list of tasks and their dependencies

• Task parallelism enables asynchrony and concurrency

1812/6/21

Parthenon basics

• Typical loops are replaced with Parthenon-provided constructs

• Behind the scenes, changing tags can transform this into a Kokkos loop with
different execution policies, basic C++ for loops, and other approaches are
being implemented

1912/6/21

Parthenon basics

• Applications describe the fields on the mesh and Parthenon manages the
memory and provides simple accessors

Access a field on a block of cells

Access several fields on a block

Access fields on several blocks

Data packaging provides opportunities to control task granularity

2012/6/21

Parthenon basics

• Includes useful examples that serve as starting points for downstream apps

• Calculate 𝜋 with adaptive mesh refinement!
• Basic hydro code with AMR that’s very scalable and performant on CPUs and

GPUs can be written in ~a day. I’ve done it!

2112/6/21

AthenaPK
performance/scalability

snapshot

P. Grete

Multiple codes are already based on Parthenon

• AthenaPK
https://gitlab.com/theias/hpc/jmstone/athena-parthenon/athenapk
− Hydro, MHD, thermal conduction

• KHARMA https://github.com/AFD-Illinois/kharma

− GRMHD. Ask B. Prather and C. Gammie!
• Phoebus https://github.com/lanl/phoebus

− More on this later…
• RIOT

− Multi-material hydro, radiation diffusion,
subgrid turbulence, reactions, high explosives

• Zapp
− Kinetic physics

https://gitlab.com/theias/hpc/jmstone/athena-parthenon/athenapk
https://github.com/AFD-Illinois/kharma
https://github.com/lanl/phoebus

2212/6/21

A film by Phil Grete…

2312/6/21

Phoebus: a new open source code for relativistic astro
Phoebus = (10^) PHifty One Ergs Blows Up a Star

Target Applications
• Accreting single and binary black holes
• Core-collapse supernovae
• Compact object mergers

Physics
• Relativistic hydro/MHD
• Stationary, time-dependent, and

dynamical spacetimes
• Radiation transport
• “Realistic” microphysics

• Almost open source – just need to click the button
• Very active development to build out all the necessary capabilities – not

everything is available yet
• Core team: Jonah Miller, Ben Ryan, Luke Roberts, Josh Dolence
• Excited to welcome new collaborators!

2412/6/21

Phoebus is built on portable, open source components

2512/6/21

MOCMC: a new method for relativistic transport
(Ryan & Dolence, 2020)

2612/6/21

Conclusions

• The HPC landscape is changing and we’re headed toward an era where
compute specialization will be prevalent

• There are opportunities for co-design that can influence this future
• Technological heterogeneity will be a major challenge unless we shift our

approach to developing the computational tools for astrophysics
• Parthenon provides convenient functionality and a bright future for block

structured AMR applications
• Phoebus is a new (soon-to-be) open source code for relativistic astro that

promises excellent performance, portability, and unique physics capabilities

